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VARIATIONAL FORl'4ULATION OF A CONTACT PROBLEM 
FOR LINEARLY ELASTIC AND PHYSICALLY NONLINEAR SHALLOW SHELLS+ 

G.I. L'VOV 

A variational formulation is proposed for the problem of thin shell interactionwith 

a smooth absolutely rigid stamp without taking friction into account in the contact 

domain. The shell material can be linearly or nonlinearly elastic. (Elastic-plastic 
problem /l/ can be reduced to the latter case under certain assumptions). Applica- 
tion of the Lions-Stampachia method of variational inequalities reduces the task 

to the problem of minimizing a Lagrange functional in a set of allowable displace- 
ments. The existence and uniqueness of the solution are proved under definite as- 

sumptions about the properties of the strain diagram. 

Investigation of contact problems forfinitesizebodiesbytherions-- Stampachia 

method of variational inequalities was executed in /2,3/. Problems on the bending 

of thin plates with unilaterial constraints were examined in /4/. 

1. Formulation of the problem. A shallow thin shell is considered, whose middle 
surface occupying a manifold S*is considered sufficiently smooth and representable by an 

equation in parametric form 

R = R (q, ze) E C@) (S) (1.1) 

which performs a homeomorphic mapping of the middle surface S * into the domain S of the plane 

%X2. The domain S is a finite sum of bounded star domains, its boundary L consists of a 

finite numberofclosed contours of Liapunov class. 
The shell can be contiguous to an absolutely rigid stamp over part of a surface whose 

mapping on the plane z,sz will be denoted by Sk. The boundary L, of this domain and the 

pressure between the stamp and the shell are to be determined. The rest of the domain is 

denoted by So so that S = S&S,. 
We assume that there is no friction in the contact domain and the stamp surface is smooth, 

i.e., has a continuously rotating tangent plane in the zone where contact is possible. Weset 

the stamp surface by an equation in the Cartesian coordinates of its points 

f (~1~ CL, IQ) = 0 (1.2) 

For definiteness, we assume that within the stamp f< 0 while f> 0 outside. 

For thin shellsitcanbe assumed that the equation of the shell surface with which stamp 

contact is possible will have the form (1.1). Then the condition 

fCR+U)>O (1.3) 

should be satisfied after shell deformation, where U = U (xX,x2) is the displacement vector 

of points of the middle surface. Considering the displacements small and assuming that 

Igrad fl>O, V(X,,Z~)E Sk7 we linearize condition (1.3) with respect to lJ 

f (R) + U grad/ (R) . 0, Y (sl, x2) E S (1.41 

We set the boundary conditions on L for a clamped edge 

,,I = ,I, = 1( = 0, ll',i)Li = (I (1.5) 

Here Us, u,, US are components of the vector Uin a local basis of the curvilinear coordinate 

system zl. ,I z the subscript after the comma denotes differentiation with respect to the ap- 

propriate coordinate, and ni are components of the external normal to the contour L. 
Conditions (1.4) and (1.5) impose additional constraints on the displacements U, taken 

as kinematically allowable. 
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the contact problem, we use the fundamental relationships of the linear 

shells. 

Eij = '/p (II:, j + Ilj, j) + kij7/‘. Xij = - UY, ij (1.6) 

eij=eij +zxij, Tij = Aij,,e,,. Alij = Dijk[XI;I 

.41jk, = IICij,;,. Diirr =(/ij/l'2)cifil (i,i, k,l = 1.2) 

Tij,,+ Pi=_). (II,.T?)f.Y (1.7) 
r, 

ilfij,ij - hijrij f P,=U. (Zl, 4 ES0 

,llij, ij - KijTij + P, + q = 0. (s,, -L..) -_= s, 

Here 11~ are the projections of the external load in the local basis, and q> 0 is the contact 

pressure between the shell and the stamp. 

The initial problem is to determine the vector-function U -U (.z,,I& that satisfies the 

complete system of shallow shell theory equations (1.6) and (1.7), the boundary conditions 

(1.5), and the constraint (1.4). The set of points at which (1.4) is satisfied with the 

equality sign forms the desired contact zone. 

We limit ourselves to cases in which the boundary L, of the contact domain is a closed 

curve without angular points, and the characteristic dimensions of the contact domain exceed 

the shell thickness significantly. 

2. Reduction of the problem to a variational problem. Let US introduce the 

S.L. Sobolev space 'lrfor the vector functions U (U1, U1, W} 

IT- = W,' (S) ‘< IY,' (S) x IY,2 (S) (2.1) 

We denote the space of functions from Wthat satisfy conditions (1.51 on L by IV. As 

is shown in /5/, the equivalent norm in the space Ili'is generated by the scalar product 

(U, v) =S [Atjk$ij(U)Fkl(v) + nijklxij(U) xpl (v)] dS 
s 

We define a closed, convex set Ka symmetric bilinear n(U, v), and a linear L(U) function- 
al in the space CV” 

Here sij and xij are components of the tangential and bending strain tensors of the middle 

surface, ei, is the stain tensor of an arbitrary point of the shell. T,j.ilfij are the force 

and moment tensors, h is the shell thickness, and Cijtcl is a symmetric, positive-definite 

tensor of the elastic constants of the materials. For an isotropic shell material 

E _I-\! 
Cij*, = - I 1 7 (:\;);fij, + bi,tij!;) + $16ij&l I I-)A* i _ 

We write the equilibrium equations in the form 

K = (v/v E W”; f(R) + v grad f (R) > 0, V (q, x2) E S} 

z(U, r)= S (Aijr;l"ij (U)EI;~ (v) $ Dij~~x~j (U)Xkl (v)] d.S, 
s 

L(U)=SPUdS 
s 

(2.2) 

where P {PD p2> ~4 is the vector field of the external forces acting on the shell middle 
surface. 

Theorem 1. The vector-function U E k' will be a solution of the initial contact 

problem if and only if the following variational inequality is satisfied 

n(U,u"-U)>L(U"--U). VU‘EK, UEK (2.3) 

Proof. Let U be the solution of the initial problem. We multiply (1.7) scalarly by 
U" - U , where U'is any element from K, we integrate the expression obtained with respect 
to s, andwemanipulate it by using the Green's formula. Taking (1.6) into account, we ob- 
tain 

~(U,U"-u)=i',(U"-u)+S~(*o"_~l(~)dS (2.4) 
s 
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The integral iii 12.4) is taken substantially over S6- since 4 =m 0 for tsr,x*)= S,. VC,, 
the domain S,+ 

f (R) i U grad f (R) = 0 I:. J 

An arbitrary element Liz f A' satisfies the inequality 

f (R) + U" grad f (I?) L& 0, k’ (z,, &) E & i2.M 

It follows from (2.5) and (2.6) that 

(U@ - U) grad f (R) > 0, Y fje,, ;cz) E: Sji i2.7) 

fn the contact zone grad f (R) = njgrad f(R){, where n is the unit normal vector of the 
shell middle surface in the deformed state. 

No difference is made in geometrically linear shell theory between the local bases of 
the initial and deformed middle surface, hence 

(UO - U) grad f (R) = {U’ - U) II 1 grad f (is) j = iup0 - w) 1 grad f (Rf 1 

Since {grad f(R) ]>O, then (z@ - ELM) > C fallows from (2.71. Therefore, the integral 
:; if.4) is non-negative ((x>-. 0), and the element U satisfies the variational inequality 

. * 
Now, let U be the solution of the variational inequality (2.3). We introduce the set 

D(S) of infiniteLy differentiable functions ~@(~&~m~_fp~) with medium compact in 8. The set 
Et(S) is compact in W”. 

Let us first examine the. case when cp takes on values fromtheset @ = ('p {q ED(s), ~3 = 
0). The functions IJ_&ea)E K for sufficiently Small e, hence, by substituting U" = U -I- 
erp and U" = U -- ecp in (2.3), we obtain 

n(U.cp)>l;(P)> --n(U,tp);~--L(tp) 

It hence follows that for any element tp the equality n {U,I~) =L(tp) is satisfied, which 
is reduced by the use of (1.6) and the Green's formula to 

2.81 

Since vt = 0, V(~,,x,)~t, then it follows from (2.8) that rzIrnz is the generalized solu- 
tion of the first equilibrium equation (1.7). 

Now, let 'p take on values from the set 

iDa = {a, 1 ~ EE D tScJ* 93, i -7 0, Y tIEI> %I E Lf -L 

% = % = ot 

Substituting the arbitrary element u" = U& EV into (2.31, we obtain n(U,q) = L (q,). 
Taking account of the properties of 'p and applying the Green's formula twice, we have 

It hence follows that Uis a generalized solution of the second equilibrium equation 
(1.7). 

Finally, let us examine the case when 9 takes on values from 

co&=&/g ED&Sk?, gJ>- 0% ps,i=Q, Ygw?iEt’h., q1=w=Of 

Oar sufficiently small F> 0 the element U" = U +- EC& E K. Substituting this element 

into (2.3). after analogous manipulations to those before, we obtain that the contact pres- 

sure 4 between the shell and the stamp is non-negative. The magnitude of this pressure can 

be found from the third equation in (1.7). 
To give a foundation to the manipulations performed, it must be assumed that 

Pr E&l M,j, ii E L2 (s*l, &fij, if E L2 (SO)* p’ij, j f L (4 (?.“I 

The solution of the variational inequality (2.3) is equivalent to the problem minimizing 
the quadratic functional /6/ 

J~Y)='iznfv,v)-_((v), VEX (2*101 

St is known /6/ that a unique element UER, the solution of the problem 
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exists for a continous positive-definite symmetric functional n(v,\.) in w". This element is 

also characterized by the variational inequality (2.3). 

3. Contact problem for a physically nonlinear shell. Let the relation between 

the stress and strain for an incompressible shell material be given in the form /l/ 

zYi,=zt/s@((eg)e,,, @(e,)=$ (i,j=i, 2,3) (3.1) 

S[j=Oij- SijU, 0 = ‘JSStjOfj, (JO= (‘/*v SijSij)(“, EO = (‘/selje~j)lj* 

Here sij is the stress deviator, et, is the strain tensor components, u is the mean stress, 

eo, a0 are the stress and strain intensities. 

For a physically nonlinear shell the initial problem (1.4)- (1.7) will include the fol- 

lowing relationships for the force and moments (the integrals are taken between the limits 

-h/2 and h/2) /l/: 

T,j= S ~fj dZ = (JIQI + JZQ) btm (3.2) 

Mfj = 1 ulJz dz = (Jkekt + JSxkl) b,Jk, 

J IL= =J9s @(r,,)z"-'dz, bm, = 6ik6J, + bfik3, 

Let us introduce a nonlinear functional in IV" 

J(U)= 5 5 a,,(t)rlt dV - 1 PU dS 
v 0 s 

(3.3) 

in which the first integral is taken over the whole volume of the shell. 
The functional derivative (Gateaux) with respect to the direction v is 

J'(U,v)= SuiJ(U)ei,(v)dV-SPvdS (i,j=l,2) (3.4) 
V s 

Theorem 2. The solution of the contact problem in a physically nonlinear formulation 

is equivalent to the solution of the variational inequality 

J'(U,u"-U)>o, VU"EK, C'=K (3.5) 

Proof. Let U be the solution of the initial problem. We multiply (1.7) scalarly by 

(U" -U), integrate the result with respect to s, and manipulate it by using the Green's form- 

ula with (1.6) and (3.2) taken into account. We obtain 

Sui,(U)eiJ(V-U)fl -iP(U'-U)dS= q(w"-w)dS 

V 

Taking account of the non-negativity of the last integral (see Sect.21, we obtain that J' (U, 
U" - U) > 0. 

NOW, let U be the solution of the variational equation (3.5). We introduce an arbitr- 
ary element tpEcD. For sufficiently small E > 0 we have U f E(P E K. The functional J'(U, 
v) is linear in v,hence, by substituting U" = U + ~(p, V = U --E(P in (3.5), we obtain 

cp) = 0 or 
J’ W, 

SaiJ(U)eiJ((P)dV -SPqdcS=O 
v S 

From here taking (3.2) into account, by using the Green's formula we hence obtain 

S [P,,, J(U) ‘pi + PI’P~I~S=O 
S 

Therefore, T,/(U) is the generalized solution of the first equilibrium equation in (1.7). 

Now, let 'pE@ll. Substituting U" = U f Eq into the inequality (3.5), we again ob- 
tain J' (U, cp) = 0. 

Taking account of the properties of 'p and the relationship (3.2), then applying the 
Green's formula twice, 
equation in (1.7). 

we analogously obtain that U is the solution of the second equilibrium 

And finally we take 

s> 0. 
cpE%k- The element u" = U + ecp E K for sufficiently small 

Subsituting such an element into (3.5), applying the Green's formula, and taking 
account of the third equilibrium equation in (1.7), we obtain that 
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The manipulations performed are based on the assumptions (2.9). The solution uf thr 
variational inequality (3.5) is equivalent to the problem of minimizing the functional 

The proof of this assertion reduces to confirming the convexity and differentiability of 
the functional J(v) /7/. Strict convexity of the functional (3.3) is proved analogously /2j. 

To prove the existence and uniqueness of the solution of the problem (3.6) of minimiza- 

tion of a strictly convex functional, it is sufficient to prove the coercivity of the func- 
tional (3.3), i.e., that 

lim J (v) = -+w. !I v /I -- +-m 

The norm in the space W", generated by the scalar product (2.2), can be represented for 

isotropic incompressible material in the form (G is the shear modulus of the material) 

I/v/j1 = (v. v) = s CijkleijekldI' = 3G SF,‘dl’ 

v 1’ 

Under the assumption that 00 (so) is a strictly concave monotonically increasing function, 

and %(EQ)<~&, VE., analogously to /2/, the coercivity of the corresponding functional is prov- 
ed for the Hertz problem. 

The approach elucidated above is convenient in cases when the stamp displacement is 
known. If the external force transmitted through a rigid stamp to a shell or plate is known 

/8,9/, then the work of these forces on the required displacement of the stamp must be taken 

into account for a variational formulation in functionals of the type (2.10) and (3.3). 
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