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VARIATIONAL FORMULATION OF A CONTACT PROBLEM
FOR LINEARLY ELASTIC AND PHYSICALLY NONLINEAR SHALLOW SHELLS

G.I. L'VOV

A variational formulation is proposed for the problem of thin shell interactionwith
a smooth absolutely rigid stamp without taking friction into account in the contact
domain. The shell material can be linearly or nonlinearly elastic. (Elastic-plastic
problem /1/ can be reduced to the latter case under certain assumptions). Applica-
tion of the Lions— Stampachia method of variational inequalities reduces the task
to the problem of minimizing a Lagrange functional in a set of allowable displace-
ments. The existence and uniqueness of the solution are proved under definite as-—
sumptions about the properties of the strain diagram.

Investigation of contact problems for finite size bodies by the Lions-— Stampachia
method of variational inequalities was executed in /2,3/. Problems on the bending
of thin plates with unilaterial constraints were examined in /4/.

1. Formulation of the problem. A shallow thin shell is considered, whose middle
surface occupying a manifold S*is considered sufficiently smooth and representable by an
equation in parametric form

R =R (z;, z,) = C® (§) (1.1

which performs a homeomorphic mapping of the middle surface S* into the domain § of the plane
z,2,. The domain S is a finite sum of bounded star domains, its boundary I consists of a
finite number of closed contours of Liapunov class.

The shell can be contiguous to an absolutely rigid stamp over part of a surface whose
mapping on the plane 1,7, will be denoted by 8. The boundary L, of this domain and the
pressure between the stamp and the shell are to be determined. The rest of the domain is
denoted by §, so that 8 = §JUS,.

We assume that there is no friction in the contact domain and the stamp surface is smooth,
i.e., has a continuously rotating tangent plane in the zone where contact is possible. We set
the stamp surface by an equation in the Cartesian coordinates of its points

f (2, Z4, 25) =0 (1.2)

For definiteness, we assume that within the stamp f<{ 0 while /> 0 outside.
For thin shells it canbe assumed that the equation of the shell surface with which stamp
contact is possible will have the form {l.1). Then the condition

FRAU)>0 (1.3)

should be satisfied after shell deformation, where U = U (z;, 2,} is the displacement vector
of points of the middle surface. Considering the displacements small and assuming that
lgrad f|>0, V(z,z,)e S:, we linearize condition (1.3) with respect to U

fR) + Ugradf (R) . 0, V(z,, 1)) = S (1.4
We set the boundary conditions on L for a clamped edge
y =, =1 =0, wn; =0 (1.5
Here uy, U,, v are components of the vector Uin a local basis of the curvilinear coordinate

system gz, Z, the subscript after the comma denotes differentiation with respect to the ap-
propriate coordinate, and n; are components of the external normal to the contour L.

Conditions (1.4) and (1.5) impose additional constraints on the displacements U, taken
as kinematically allowable.
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To formulate the contact problem, we use the fundamental relationships of the 1linear
theory of shallow shells.

eije= e (U, 4+ 05, F R, W= —w,; (1.6)

ei=€ij +Mij Tij= At Mij==Dipr
Appe=hcimre Dipy=B1 ey (L R I=1, 2)

Here ¢€;; and ¥%;; are components of the tangential and bending strain tensors of the middle
surface, €; is the stain tensor of an arbitrary point of the shell, T,;,M;; are the force
and moment tensors, h is the shell thickness, and c¢;j; is a symmetric, positive-definite
tensor of the elastic constants of the materials. For an isotropic shell material

E_ "y 1
| _7‘_ iy + 8i8p) + 18idyy |

Cijpt = T2 L

We write the equilibrium equations in the form

Ti,'”-{—pg:(). (Ly, To) =5 (1.7)
Mg, i — KijTij 4+ Pa=0, (rn1)E 3
Mij,ij—KijTij+ Pa+g=0. (2, 2:) =

Here p; are the projections of the external load in the local basis, and q > 0 is the contact
pressure between the shell and the stamp.

The initial problem is to deterxmine the vector~function U —=U (z;, z;) that satisfies the
complete system of shallow shell theory equations (1.6) and (1.7), the boundary conditions
(1.5), and the constraint (1.4). The set of points at which (l.4) is satisfied with the
equality sign forms the desired contact zone.

We limit ourselves to cases in which the boundary [, of the contact domain is a closed
curve without angular points, and the characteristic dimensions of the contact domain exceed
the shell thickness significantly.

2. Reduction of the problem to a variational problem. Let us introduce the

S.L. Scbolev space 'V for the vector functions U {uy, u,, w}
W= 11,1 (8) < W, (S) x W,2(S) (2.1)
We denote the space of functions from Wthat satisfy conditions (1.5) on L by W° &As

is shown in /5/, the equivalent norm in the space W’ is generated by the scalar product
R G - _ . NN
(U. v) = V1 AukEi; (U) & (V) + Dyt ; (U) 2y (V)] A5
]

We define a closed, convex set K a symmetric bilinear =x(U, v), and a linear L (U) function-
al in the space W°

={vive W5 fR) +vegrad fR) >0, V (z,,z) & S}

(U, \)_&[A”“s,, Ve (V) & Dk (U) gy (V)] 45, (2.2)
5
Lan=\pugs
LET)y=\PU4S
5

where P {p,, p,, Ps} 1s the vector field of the external forces acting on the shell middle
surface.

Theorem 1. The vector-function U & K will be a solution of the initial contact
oblem if and only if the following variational inequality is satisfied

el

AU, 0°—-U)>L(t°-U). VU =K, UsKh (2.3)

Proof. Let U be the solution of the initial problem. We multiply (1.7) scalarly by
U° — U, where U°is any element from K, we integrate the expression obtained with respect

to §, andwe manipulate it by using the Green's formula. Taking (1.6) into account, we ob-
tain

“(Uva*—U)ZL(Uo—*U)+Sfl(w°—u')dS (2.4)
5
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The integral in {2.4) is taken substantially over §; since ¢ = 0 for {a, z,) = &, ey
the domain S

f(R) + Ugrad f(R) =0 LY

An arbitrary element {I'e K satisfies the inequality

F Ry + Ulgrad f (R} = 0, V (2, &) &= 8 {2060
It follows from (2.5) and (2.6) that
(0°—U)grad fR) >0, Y {2, ) = 8, 12.7)

In the contact zone grad f (R} = n|grad / (R}, where n is the unit normal vector of the
shell middle surface in the deformed state.

No difference is made in geometrically linear shell theory between the local bases of
the initial and deformed middle surface, hence

{U° — U)grad f (R} = {U° — U)n [grad f (R} | = {&° — w) | grad f (R) |

Since fgrad f(R)| >0, then ¥ — w) >0C follows from {2.7}. Therefore, the integral
in {(2.4) is non-negative (g >-0), and the element U satisfies the variational  inequality
(2.3).

Now, let U be the solution of the variational inequality (2.3). We introduce the set

D {S) of infinitely differentiable functions ¢ {¢, ¢, @3} with medium compact in §. The set
D {8) is compact in W%

Let us first examine the case when ¢ takes on values fromtheset @ = {¢g {g & D (5), ¢ =
0}. The functions Ud-epeés K for sufficiently small &, hence, by substituting U°=U +
ep and U° = U — gp in (2,3), we obtain

U@z Ligy —alU,@>=—Lg

It hence follows that for any element ¢ the eguality & {U, ¢) =L (9} is satisfied, which
is reduced by the use of (1.6) and the Green's formula to

STs;q?aH;iﬂ —S Ty, 59148 =SP:%~ as (lj=1,2) 12.8)
L & &

Since @; =0, V{2, z,) & L, then it follows from (2.8) that wu;,u, is the generalized solu~
tion of the first equilibrium equation (1.7).
Now, let @ take on values from the set

Dy ={ploesD @) 05,:=0 V@,mlel, Ly
o = ¢, = 0}

Substituting the arbitrary element U®=U e into (2.3}, we obtain =zn (U, ¢) = L {g).
Taking account of the properties of ¢ and applying the Green's formula twice, we have

S{Tifoj““Mij, 55— Pa) g dS=0
E

It hence Ffollows that U is a generalized solution of the second equilibrium equation
(1.7).
Finally, let us examine the case when ¢ takes on values from
Oy ={g|g SD S} g3 O 9o,; =0, V{nz) €Ly, ¢r=72=0}

For sufficiently small & >0 the element U° =T 4 sg € K., Substituting this element
into (2.3), after analogous manipulations to those before, we obtain that the contact pres-—
sure ¢ between the shell and the stamp is non-negative. The magnitude of this pressure can

be found from the third eguation in (1.7},
Tc give a foundation to the manipulations performed, it must be assumed that

P Ly, My &Sy My, LS Tiy € La(S) (2.9)

The solution of the variational inequality (2.3) is equivalent to the problem minimizing
tke quadratic functional /6&/

Jvi=gn{v, vVi— L{v), vEX {2.10)
It is known /6/ that a unigue element U e K, the solution of the problem

J (U) = inf J(v)
vek
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exists for a continous positive-definite symmetric functional = (v,Vv) in W°% This element is
also characterized by the variational inequality (2.3).

3. Contact problem for a physically nonlinear shell. Let the relation between
the stress and strain for an incompressible shell material be given in the form /1/

G .
Siy="/s@ (e) ey, Pleo)=7- (Lj=1,2,3) (3.1)
Sij=0'”-—6j)'0', 0=1/3611‘0!jv UD=(3/21 ngSii),/'y Eo=(2/aelj€(j)'/‘
Here §;; is the stress deviator, ¢;; is the strain tensor components, O is the mean stress,
Oy, € are the stress and strain intensities.
For a physically nonlinear shell the initial problem (1.4)— (1.7) will include the fol-

lowing relationships for the force and moments (the integrals are taken between the limits

—h/2 and  R/2) /1/:
T“=S°U dz= (J1e + Joxs) bip (3.2)

My = S 015z dz= (Jaex + Js%i) by
Jp= '/ss @ (e0)2™1dz, bypy==06ydy + 8;0x

Let us introduce a nonlinear functional in W°

e(U)
[ 473 A4 n,n\,f,IV_:(DITrI\‘ (7 2y
JEGy=1) ) cotidtd yPU 4o (3.3)
vV o s
in which the first integral is taken over the whole volume of the shell.
The functional derivative (Gateaux) with respect to the direction v is
I 0. v) = SoyUeymav —{Pvdas (,j=1,2) (3.4)

\4 s

Theorem 2. The solution of the contact problem in a physically nonlinear formulation
is equivalent to the solution of the variational inequality

JUU-U)0, VI’eK, UK (3.5)

Proof. ©1Let U be the solution of the initial problem. We multiply (1.7) scalarly by
(U° — U), integrate the result with respect to §, and manipulate it by using the Green's form-
ula with (1.6) and (3.2) taken into account. We obtain

(ou (U ey (00— V) a¥ —SP(U°—U>dS=§q(w°—w)dS
v 8

Taking account of the non-negativity of the last integral (see Sect.2), we obtain that J' (U,
u°—-u)>0.

Now, let U be the solution of the variational equation (3.5). We introduce an arbitr-
ary element @ & ®. For sufficiently small &>>0 we have U4 ep & K. The functional J' (U,
v) is linear in v,hence, by substituting U° = U + ep, U° =1U — gp in (3.5), we obtain J' (U,
) =0 or

SouWey(@dV — [ Peds =0
12 8
From here taking (3.2) into account, by using the Green's formula we hence obtain

$(70, 1) 00 + proil dS =0
5
Therefore, I,;(U) is the generalized solution of the first equilibrium equation in (1.7).

Now, let @& ®,. Substituting U°= U 4-¢ep into the inequality (3.5) , we again ob-
tain J' (U, ¢) = 0.

Taking account of the properties of ¢ and the relationship (3.2), then applying the
Green's formula twice, we analogously obtain that U is the solution of the second equilibrium
equation in (1.7).

And finally we take @& ®@,. The element U° =U + ep & K for sufficiently small

e > 0. Subsituting such an element into (3.5) » applying the Green's formula, and taking
account of the third equilibrium equation in (1.7), we obtain that

g2 0, V (x4, z,) & S,



678

The manipulations performed are based on the assumptions (2.9). The solution of the
variational inequality (3.5) is equivalent to the problem of minimizing the functional
JU)KLJI(v), VUK N

The proof of this assertion reduces to confirming the convexity and differentiability of
the functional J(v)/7/. Strict convexity of the functional (3.3) is proved analogously /2/.

To prove the existence and uniqueness of the solution of the problem (3.6) of minimiza-
tion of a strictly convex functional, it is sufficient to prove the coercivity of the func-

tional (3.3), i.e., that
lim J (v) = 400, | v || — +o0

The noxrm in the space W° generated by the scalar product (2.2), can ke represented for
isotropic incompressible material in the form (¢ is the shear modulus of the material)

[vp = (v, v) = S(,‘ij“eije“dl” =36 Ssa—‘dl'
v v

Under the assumption that o,(g) is a strictly concave monotonically increasing function,
and g, (gy) < 3Gey, Vey, analogously to /2/, the coercivity of the corresponding functional is prov-
ed for the Hertz problem.

The approach elucidated above is convenient in cases when the stamp displacement is
known. If the external force transmitted through a rigid stamp to a shell or plate is known
/8,9/, then the work of these forces on the required displacement of the stamp must be taken
into account for a variational formulation in functionals of the type (2.10) and (3.3).
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